- 23. Wafer scale package as claimed in claim 18, wherein at least one of a front surface and a rear surface of the lens substrate comprises an optically non-transparent conductive coating with a plurality of apertures for the transmission of light.
- 24. Wafer scale package as claimed in claim 18, further comprising a base substrate comprising a plurality of functional elements, in particular image capturing elements.
- 25. Wafer scale package as claimed in claim 18, wherein the lens elements are manufactured by means of replication on wafer scale.
- 26. A method for manufacturing a plurality of optical modules according to claim 1 on a wafer scale, comprising the following steps:
 - Providing a generally transparent lens substrate having a front surface and a rear surface and a plurality of lens elements:
 - providing a spacer layer having a front surface and a rear surface and comprising a plurality of separated or interconnected spacers with inner side surfaces extending between the front surface and the rear surface;
 - providing at least one electrically conductive shield which is an integral part of at least one of the spacer layer and the lens substrate;
 - stacking and connecting the lens substrate and the spacer layer in such a way that the lens elements and the at least one spacer are arranged in a well defined spatial relationship;
 - dicing the package formed in the step of stacking and connecting the substrates along predetermined planes to produce individual optical modules.

- 27. Method according to claim 26, wherein the step of providing a spacer layer comprises providing a spacer layer which is at least in parts electrically conductive.
- 28. Method according to claim 26, wherein the step of providing a spacer layer comprises providing a spacer layer comprising at least one basic body which is made of or comprises a conductive material.
- 29. Method according to claim 26, wherein the step of providing a spacer layer comprises at least one of: coating at least the inner side surfaces of the spacer layer with a conductive material prior to the stacking and dicing steps, and coating at least the outer side surfaces of the individual optical modules with a conductive material after the dicing step.
- **30**. Method according to claim **29**, wherein the coating step comprises depositing a layer of conductive material by means of at least one of spraying, painting, immersing, sputtering, PVD, CVD.
- **31**. Method according to claim **26**, further comprising applying a non-transparent conductive coating with a plurality of apertures for the transmission of light to at least one of the front surface and the rear surface of the lens substrate.
- **32**. Method according to claim **26**, wherein the step of providing a generally transparent lens substrate comprises forming a plurality of lens elements on the lens substrate by means of a replication process.
- 33. Method according to claim 26, further comprising providing a base substrate having a plurality of image capturing elements, and stacking and connecting the substrates in such a way that the image capturing elements and the lens elements are arranged in a well defined spatial relationship, prior to the dicing step.

* * * * *